会员
洞察AIGC:智能创作的应用、机遇与挑战
李海俊更新时间:2024-12-28 12:33:18
最新章节:后记开会员,本书免费读 >
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。
品牌:清华大学
上架时间:2023-08-01 00:00:00
出版社:清华大学出版社
本书数字版权由清华大学提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
李海俊
主页
同类热门书
最新上架
空间计算:人工智能驱动的新商业革命
空间计算是一种不断发展的以三维世界为中心的计算形式和交互形式,是以计算机视觉为基础的高阶应用。其核心是使用AI、计算机视觉和扩展现实将虚拟体验融入物理世界,让用户摆脱屏幕的束缚,自然地与数字世界中的对象互动,就像与真实世界中的对象互动一样。随着生成式AI的爆发,空间计算平台将拥有更加丰富的内容,将在很大程度上改变我们的生活和工作,重新定义商业模式,并改变我们与技术和整个世界互动的方式,推动我们进入计算机12.1万字- 会员
文心一言:人人都能上手的AI工具
本书作为文心一言的学习指南,全面、细致地介绍了文心一言PC端和App的各项功能和使用方法,力求通过简洁明了的语言和图文并茂的形式,让读者快速掌握文心一言的各项功能。全书共8章,首先简单介绍了人工智能发展的几个阶段及文心一言的相关研发背景;随后介绍了文心一言的基础页面及功能等内容,以及文心一言在学习、工作、生活娱乐方面的应用及相关案例;接着介绍了文心一言的插件,以及文心一言App的功能和使用技巧;最计算机10.7万字 - 会员
合成生物学智能化设计与应用
本书以人工智能技术在合成生物学领域的理论、方法及应用为主线,详细阐述人工智能在合成生物学不同层面设计中的应用进展,深入讨论人工智能在合成生物学实际应用中面临的挑战与困难。本书先概述合成生物学与人工智能基本概念以及发展简史,然后介绍人工智能技术在生物元件、生物模块、生物系统设计方面的应用,并通过案例展示了人工智能与合成生物学技术在生物医药领域的研究进展,最后分析了人工智能驱动合成生物技术的发展趋势,计算机23万字 - 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
被算法操控的生活:重新定义精准广告、大数据和AI
这是一个“算法世界”:建立在数据之上的算法指导社会的运行、决定我们能在网上看到什么;它更是自动驾驶、智能管家、未来医疗以至智慧城市的基石。如果我们不了解算法如何使用数据,就无法知道人工智能将如何改变我们的生活。通过采访谷歌和剑桥分析公司的数据专家、亲自模拟高科技巨头的算法模型,萨普特带我们直击智能产品背后的秘密、思考数字科技给社会带来的风险。我们对科技和互联网的日益依赖,使数据研究者能够收集与我们计算机14.8万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
情感计算
在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和计算机23.3万字 - 会员
机器学习教程(微课视频版)
本书兼顾机器学习基础、经典方法和深度学习方法,对组成机器学习的基础知识和基本算法进行了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析并讨论了无监督学习的基本方法,对深度学习和强化学习进行了全面的叙述,比较深入地讨论了反向传播算法、多层感知机、CNN、RNN和LSTM等深度神经网络的核心知识和结构;对于强化学习,不仅介绍了经计算机20.6万字