广告数据定量分析:如何成为一位厉害的广告优化师
上QQ阅读APP看书,第一时间看更新

前言

为什么要写这本书

现如今,数据、大数据、数据分析成为互联网行业的热门词汇。数据定量分析的方法论已经在互联网诸多领域创造价值,如量化投资、互联网金融征信和风控、广告监测等。而广告优化领域的数据分析还处在非常落后的状态,大部分广告优化师只掌握了环比、同比、百分比等数据描述的基础方法和折线图、柱状图等基础图表,优化师的优化工作以经验主义居多,优化能力的同质化严重。我在服务广告主的过程中,一直探索通过数据定量分析的方法,将广告数据分析这件事做得更好,为客户的广告投放创造更大价值,2017年我将服务某客户的历程做了总结,写成一篇《玩转应用商店——相关性分析实现不同广告位资源的配比优化》,不曾想在业内引起了小小的轰动,得到多位资深业内人士的认可,说明了我的研究方向——“广告数据定量分析”是很有价值的。

实际上,广告数据定量分析在网站分析和产品运营中早已践行,如转化率优化、AB测试的方法论,就是建立在统计学基础上的数据分析。最近两年,GrowingIO、诸葛IO、吆喝科技等数据创业公司的兴起,更是说明了市场上数据驱动用户增长和效果优化的用户需求很大,市场前景广阔。

近年来,随着互联网广告行业市场规模增长,新的广告媒体和广告类型层出不穷,互联网创业方兴未艾,对广告优化师的需求渐长,广告优化师队伍人数激增,越来越年轻化。而一直以来,优化功底过硬、经验丰富的优化师都是业内的稀缺人才。一方面,从拉勾网、BOSS直聘的搜索结果可以看出,拥有3~5年经验的市场推广人才是很多公司急缺的。另一方面,数据分析作为广告优化师的必备技能一直是业界共识,但由于缺乏系统的学习和培训,广告优化师从业者的数据分析功底良莠不齐,对数据分析一知半解的大有人在,哪怕有心想学习提高的业内人士,也没有合适的学习资料。对他们来说,纯数据分析的书籍和视频课程,学习门槛较高,且难以学以致用;而结合广告优化的数据分析文章干货难觅,多是营销软文的性质,难以满足学习需求。国内至今没有一本关于广告优化数据分析的正式著作出版,本书正好开创了先例。

在本书中,我希望能在以下几个方面为行业发展添砖加瓦:

1)指出广告优化师提高数据分析能力的方向,即通过科学的数据定量分析,从KPI出发以终为始,精益优化;

2)为想成为高级优化师,渴望塑造个人核心竞争力的读者踏出一条大道,为年轻的优化师实现跨越式发展、弯道超车提供助力;

3)对现在的优化师的广告优化工作有所启发,促进行业内更多的交流和创新;

4)填补广告优化与数据定量分析这一交叉领域的空白,提高广告优化岗位的技术含量和经济价值。

读者对象

·甲方广告主从事渠道运营的相关人员

·乙方广告代理公司的初中级广告优化师

·广告媒体方的运营人员

·其他关注流量购买和转化的读者群体

本书特色

数据分析作为广告优化师的必备技能一直是业界共识,但亚马逊、京东上以“广告数据分析”为主题的书尚且没有搜索结果,在知乎的一些问答中,资深人士多推荐纯数据分析的书籍,说明广告优化与数据分析的交叉领域尚处空白。

本书在内容上几乎涵盖了互联网主流的广告形式和优化方法论,从KPI出发,以终为始。从统计学的基础,讲到SEM广告、应用商店广告、信息流广告的优化,一直到从社会学角度剖析广告业内的3种角色,最后展望了广告优化的未来发展。同时书中提供了丰富的案例,实践了作者提出的广告的数据定量分析方法论,对一些优质的数据分析工具也进行了相关阐述,知无不言、言无不尽。

如何阅读本书

本书的内容可分为3大部分:

基础部分(第1~3章和第8章),介绍了广告优化中的统计学思想和基本原理,为后文讲述数据分析方法论打好基础。在最后一章对互联网广告商业生态进行阐述,关于广告优化师如何实现个人精进成长有所分享。

应用部分(第4~7章除案例部分),以移动广告市场上3大主流广告类型为例,分别阐述不同广告类型的流量特点、优化难点,并提出一些创新性的数据分析方法论。另外对于多广告推广渠道的综合效果评估和统筹优化也做了深入讲解。

实例部分(第4~7章案例部分),通过对4个具有代表性的广告优化项目的案例讲解,让读者了解广告数据定量分析和效果优化的完整流程。

勘误和支持

由于作者的水平有限,编写时间仓促,书中难免会出现一些错误或者不准确的地方,恳请读者批评指正。为此,特意留下我的联系邮箱qiyunjian@126.com,如果你遇到任何问题,欢迎邮件交流,我将及时为读者提供最满意的解答,期待能够得到你们的真挚反馈。

致谢

首先要感谢宋星老师,感谢你作为前辈对我一如既往的提携和帮助,得益于你的自媒体平台,我的一些文章得以在业内传播和提高影响力。

感谢曲海佳老师,在与你共事的日子里,你在专业上给予我很多指导,肯定了广告数据定量分析的价值,鼓励我坚定地研究下去。

感谢我任职过的致维科技、量化派,因为领导层的开明和支持,才让我在有了大量的广告数据基础上,进行更深入研究的可能。

感谢机械工业出版社华章分社的编辑杨福川、张锡鹏,在这一年多的时间中始终支持我的写作,你们的鼓励和帮助引导我顺利完成全部书稿。

最后感谢我的家人和朋友们,感谢你们对我写作的关心和支持。

感谢国家图书馆、通州区图书馆为我提供了良好的写作环境。

谨以此书献给众多从事广告优化、渠道运营的朋友们!

齐云涧