![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1739277157-T6qqHNz0BvHPXDKWBn00H3cFiXc8ed1Q-0-e357041ccd2ef071c8eb7105003b76ff)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1739277157-8hnYCqCuT5ozBYDUwEyWtw08QseUsKFH-0-f647bcdb080c7f7cd55983885f27d4f6)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1739277157-F8fHksGHxRvAtS3f7sleqKr3iNxSadVL-0-d03836fc6b5cc66b6fa9aafaf9a9dcec)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1739277157-H4eCRLlwXKjYcKGAoz2LTugnL8uIOLEM-0-422d7d8acfeaa959858befb07f7cc3aa)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1739277157-Xlydwh98NUsxAV0CnsSwJBFQo9jw453o-0-6c039573a8f957a441ef0d690c9ec6f2)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1739277157-oSl5qAAVEGjYHDmR5TS1xI1F7cI6FLhd-0-4879296ba527de8fa39182de7c4e573c)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1739277157-XsvXqPPxRyGnZ1IIhzL6jabAaA93RR5L-0-9b7f5939dc27c27254e716c63ffe5572)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1739277157-DiyUx2jO2X4us8aX63Njd6povXxz2dHz-0-6f8a39c458b4f4a1d51893c57ed26487)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1739277157-qBV8Mba6tnrx2EfEUeKX0s9TsEnU5LGk-0-1781618f8213a00c8c6af15b483a170c)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1739277157-o81AHvwMTx5Ja31R2AqnmxuSX13Ehh28-0-cd21fa7b5074259fa107d2f4eaef0c92)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1739277157-xpUd3aa5oHBsbj2U5Jb4K5Lemed0vOME-0-cde1ccec9464114c94a6a4378e256c5a)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1739277157-i7an2AzPqcCJp278Lv86Hlxy0x1qvkfD-0-4d5ccc15609dbe26f1dd91b37fd4db8e)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1739277157-OkZe7t9DDH0QniV4ORISjBzQ5NFZL2km-0-ed6c7f7c51062fc4ea055e3b99e27cbd)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1739277157-MNoD094m1EUxWQ6QnfKrwZJZY8lgmfxR-0-24a0542595c00db09dbe3ae079150073)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1739277157-qQsLx5CoZKoKWipOTrzyhD9OfD9cNUY8-0-44641f8e293c8be0bd0549640a5d2aac)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1739277157-aR2jnEDghFeXK8xTe7HEWZdpG63kgrCt-0-d1bfb3d6f62e969407f63d31c56a4a1f)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1739277157-hxDBLAKmdMbvzwHBZfsDUdFETHdAOBQM-0-90e72b49ba08c44a14793ef02b45324e)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1739277157-V2rxCRLPWKAPOkT1Hod3hIV6kX1MVAcp-0-442f4d72654bb1afcd1db523d46e54ff)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1739277157-qkPYKISOSxebvSIqGoTCVuueRRY6WPHa-0-08d6b90914d6f3615f288b073c127b2d)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1739277157-WMo8ojCyg7ExLNtxwPxvwKGRHfFT5Agi-0-8c33c3495189cef81e7a2424e9b4a256)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1739277157-Iv2hMctADZQeItbVpQMytNIxurxco4CE-0-bb7ec4590ca205817552c4b0713f121c)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1739277157-2m0Bud74vo67LiczzH9gwPToG1SwKNtx-0-aa24798e2dcb5f6eb9cbda8b19dda551)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1739277157-UCkcO6P8ieMyqWYI4g3jRaqDzfCtSt4j-0-5400a65281996579c268e5195ec8d56d)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1739277157-PlqXehatybKaGpe6Udl0HtdnSIHPljco-0-a86a192bd24bae4d64c3024faa35aa71)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1739277157-yA7bEE3SXM2fei6TfTNKyeHHLiQrAszj-0-468ced27f7029c20cba244e966d1c1b4)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1739277157-9k94Lme84Nqtg1GEuyf4Npzw9XO5LG9K-0-1b85c3c942b93dd5b041077bb6e655a0)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1739277157-EpLasd7rjmM3aPDBXkES1hJo7q64RPZC-0-0975a91759fc0364d80093f983f796c9)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1739277157-dgGoZA61j20miVkfQxWLRFDOAn16JSPB-0-16e197dabba94574e22b7982eeec6b5c)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1739277157-bCbCl621tOfcskjk9Iz8G058z6MlrakA-0-be57f44ed9029685fbcc8006bd3916b3)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1739277157-v8vcgNsPJGsa6lT6v0CQudzSqvlPYYxq-0-b7e013462345ed5f71e7dfe06e673724)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1739277157-5sBi48b82Pgl7IfESDddx3215ya57VHk-0-2a8322a24088d7d873bb450e99dee33f)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1739277157-rLSY8D8uk8knAR5iuGZnaW5O7DT41m2Y-0-23296b626d9e068e0ff86db23a38b305)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1739277157-8d5M8M9yBF5W8TZSsQpQw13J2aGQac5B-0-f677e16640de674cf57d1e6e7c5adec1)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1739277157-t9DJJ0p7AgQuKOUEnbMTE4ET9h2TyoF5-0-974726d8a66fff2dedb460f4496aa796)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1739277157-szs5SIpB1Ozgdb73KvIobnG0wIPGUp7I-0-70a2d386d340ad3b65a05d28924dddcf)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1739277157-wDk38V774TNU4qyYeCtKUBpNWPznp1c9-0-c3111b2f8b4722124563d115fcf160b5)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1739277157-TBJh5tqDVa6jYDxD0UsFVxJZMmgwfuJp-0-ce5c2725409425fd6636a06708a23d92)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1739277157-eXNAlAUVlY09S0oYhRCej1zOMkRJdH6j-0-9bc784cefffc00d178f6f22b62991774)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1739277157-szg3Bu7bSxf0Dl2DTC5dhU50k8RJGTyj-0-a6ce55e4e783d4e235e7e9831f2b5db2)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1739277157-uPivSbVYd1AI9BTr6ZoyxlIPAESzvBkV-0-7a64881033adf8c36fbfd4fc78ea5fc5)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1739277157-IpfmIi2PB2OV9IR8zyhIVUp3hcHUdPGs-0-323ad1e5f6af1462c803f40b1480c870)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1739277157-OTMeZ2vujbYF22jdcI1g0IkLAb9tvL0R-0-2e74e6453d3958aff48b66ab716b66c4)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1739277157-vu3m2j9SyZamYsV52xN5s30fwO9ywkac-0-685db5939302cf3ffbd661433a13700b)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1739277157-5ifHABF8mhTFwReym4Hqmwy0obfxgRcR-0-d5abd2beb6a1a71f3a1b23d837ddd16d)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1739277157-jMf1ZfRM4S5ypuNIAYvGsfUMYAB8NGXY-0-376c9457ccee3ad777d3b894f8f454a2)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1739277157-8OJhNuKXbMs5z1TrfY4LAcrsHORyrOAd-0-9753f904b46ee1f54abbc1c467caed5e)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1739277157-cK58G6LN9gVwSBW6weaBnR5B5n0nSn1p-0-01c7c8237f43a22a893e304a0386a008)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1739277157-w7nQo2MW2oFa3gUUXCmlzodDPsoTCqSW-0-fde9cb04b13738a91e0e7cb9f99b4ac0)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1739277157-ywPC4ZAvcw7RB31KxSpdBsglChiTmQEJ-0-75139f5d62489bbd207c3835cd950008)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1739277157-hNY4cSrOmIdN8ZtzlkpEy6zqJhkSoLDS-0-1834e76769b11834117435f481d6a067)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1739277157-Y3KD4C9CF3mheDv6RirNkgEh5KOj8oB6-0-b24e3ac8dcb388c5cc477e18ee180bb5)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1739277157-v07HGSRyc4a2ZbEXFQvT8XfPHpTqi2ub-0-30f88a33129b7bb2a459dce946232bd8)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1739277157-iGOE3vPkdsoe0UjUrNDiW9hVgSWSCeMP-0-ac7c9d00d3e1da6c5f035e0da3cf72ce)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1739277157-uqJaIW7iDs6HvJZ0ODGaH0b1MlABFTbQ-0-42d7b7e00ecdaee31918c80b11b76a3f)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1739277157-aOvsjdxEV7KvGocWZTYOy2mdExXEOCQ0-0-215960099a62887ddaab1a6e9a4efb94)
就得到定理中的计算公式.□