![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739278518-SbaseoZO767KMB7VdYtq3vrahx4d2UL1-0-d2c6fca0d17721376735a9008b006dd6)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739278518-gMlbMO0c6ILdrfDvpDVZINHMbWtYw8FX-0-70849f345e493bef87324d2e51a5d617)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739278518-xw7GCp9zW3KfLOQiP8ou4CAfO8SKB0Gh-0-2d31f9f42810a17d7f44b85eb1e5f3b3)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739278518-e3uY8IFQDkb9yNHIVNRHzAfAykO1dEf3-0-41b0b03937f6a68db0e2ca1f5c9c9baf)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739278518-CjeRmWbyiNVLcmfXqg5lfF2mZKAqlcQk-0-53cd79f7abc04834a895aaa103fed48a)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739278518-kGX6gTWs2FBskxP6vQKEQPUeTEpKaTi8-0-8abf0a2bcd29d80e246c3a8afdd4ae3a)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739278518-j8c8OMZK5KKtPs7sLF6VytiPfaIZqJXi-0-2dea5056a8f3f7de41ca3a1874cf29d0)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739278518-AL9UkKAkGcAMuw7SN1uAkCkLonIulWrl-0-c7219293e8a45e54597a80e92a30b08c)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739278518-51H1I2sSybM0fiSikHgobSCOQvCaaugY-0-769d5d1f2ac84ffe920a76075ff4ed8c)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739278518-BulSKi6aoTlrdk865Km1PiOwzDZMQK07-0-5ad29e384667577c1b08ddc83bbfb2d7)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739278518-qtvfxzV1TlzhqpFaIbLzCXZbET2FyuP6-0-326df57bf769d228785243c7bbe17d8c)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739278518-H70iJmp8NYK7SoDwI3acKnxzr8TKnHsk-0-fbcc7c6aeb600015cfb41d6de3212935)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739278518-4EKtuBpgyFuKcq33D0fFAgUT41O0I0tb-0-6150852870642f117937c88e2999bc92)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739278518-wWo1al0Be5Y4CDY8cG0i29SkvMOcUdoN-0-d9de310f87a80ad0e9d9ef0a6b0a25b0)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739278518-neOUaadTqnaWVu6jPHdDj0inlK1jkMpn-0-c3482459b86a538d3e1643e1282a8765)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739278518-MEynw1nJPHnB4d3vtlQeJWOS0ABHP1Vo-0-65567a68ec8b7f24f2b5c5b2a4a78765)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739278518-zAnDxlfC8eAhuPsATpdBVquDH28iePJr-0-da85ea7a07bf04c670e363870edc6bd6)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739278518-OTYWrfShMaggKCQvJO4ILzrhnQ2dEbYR-0-c8af07ad7587bebadc3a0f2077e18749)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739278518-HKWQ2WV3JeX8mBXsTbye93UqrYxoJ9KO-0-caabb70461f53a49bec6519c5c848869)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739278518-GIVoDeFARpBTvavh0RTKIPAsTY15n3fj-0-666b483acaf0f0496c0fdb1be961a130)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739278518-90uy2hEHhu8nDsfLoGDMHVrS6odTPqXS-0-d2cdb91ca966e839e346410bce19f0c1)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739278518-pNRWNR46eYZ6nMz9IznVXV9CZ3F88EB8-0-056c47bff8a04adf66e980c33698b631)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739278518-ELxAsYO9iihNZafczj2zCkOtbRz5jVI4-0-f741264aef499a1f52a3c3a5d3a58e6b)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739278518-Syq9Vq2VtKCeD00v95MTYnJbghoEI95C-0-4d9b84c9c051310b53591300709d55aa)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739278518-rsM5l9fMG3N8OztGYDc9eP3ycc3fPLUH-0-37603b3157008877e31f6d24410edf87)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739278518-jzN7aDmWFX4GSSWJPvbZYVnXqcT1ndSZ-0-3947a64bcce4ce97d96f0a1ac00777fc)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739278518-Bs0m5xcWmrCTbgvAvDZOjxlTEVA90Q1H-0-715a9f507e77da4f5b4bae9b045eae98)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739278518-3RfNckiqERkrsDHIVHjhDYhYnDZPuim0-0-b1721a03f68dffa908c4f1bd1bd96b12)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739278518-avoJKpRcNl9VKQLAb4qv0wekC2ey5cSv-0-2b32293086676f579b8211962c6a3173)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739278518-FYm9XbYQ4xg7OV0geBd288ljt4yNOTSs-0-2ae01b3392d66cbc3cbe52af1afd2e9c)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739278518-Oo8BOxbs07eb94bKxy6iNmUwUhBOwini-0-7ce7989f881d864b3f81eff0cb0a55ed)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739278518-Wa9dIUV3ZIFJVU7GI2jsePIwNB02pei4-0-34d272e2746070b31ceec89bfe76aff5)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739278518-qRcGft4Y1N8QAg9F5bzJFhrZ3CzO4rZo-0-47e970e6b9780f188c299dd6165a7eb8)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739278518-P0gWvpYhjhS43whMTwq5sFNW2FLqLqtb-0-e3430c2c7ff32a87675a11a822d506c7)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739278518-7RupJg9j1PRMJ4oOsWNZzZqSQoZ4PPHd-0-659d0c29bb49944ecffc7f89c039b5da)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)